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Negative-dimensional groups in quantum physics 

Gerald V Dunne 
The Blackett Laboratory, Imperial College of Science and Technology, 
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Received 23 June 1988 

Abstract. We show that an explicit definition of negative-dimensional classical groups in 
terms of their action on Grassmann representation spaces, together with Weyl’s character 
formula for the Grassmann tensorial representations of such groups, leads to a framework 
in which some surprising ‘negative-dimensional’ properties of group theoretic invariants 
arise naturally. As an application, we show that the spectra of the Grassmann harmonic 
oscillator and of Grassmann angular momentum are related to their bosonic counterparts 
by a simple analytic continuation in the dimension. 

1. Introduction 

Physicists have various good reasons to believe that Grassmann variables are (in some 
appropriate sense) ‘negative dimensional’. This belief is usually based on their 
(Berezin) integration properties (Parisi and Sourlas 1979, Dunne and Halliday 1987, 
1988). In this paper we show that the correspondence between Grassmanns and 
negative dimensions goes far deeper, and has interesting consequences in the rep- 
resentation theory of the classical groups, and in quantum spectral analysis. 

One motivation for this work is the fact that the quantisation of Grassmann systems 
has come to play a vital role in our current understanding of quantisation, particularly 
of constrained quantisation. Grassmann phase space variables, corresponding to the 
constrained degrees of freedom, feature prominently both in the path integral formula- 
tion of Fradkin and Vilkovsky (1975), and in the superfield formulation of Bonora et 
a1 (1981). This coincides quite nicely with the idea of constraints as being ‘removed 
dimensions’, a fact that has been used by Aratyn et a1 (1987) in their incorporation 
of Parisi-Sourlas symmetry into the BRST quantisation of reparametrisation-invariant 
theories. Grassmann variables have also been used as a form of ‘dimensional reduction’ 
in a path integral approach to stochastic quantisation (McClain et a1 1982, Gozzi 1983). 

In Q 2, we discuss the tensorial representation theory of the classical groups on a 
Grassmann space, and show that the irreducible characters for such representations 
are related to the characters of bosonic tensor representations in a simple way. An 
explicit realisation of this relation is given in the appendix. 

In § 3, we summarise various curious mathematical results of Penrose (1971), King 
(1971) and CvitanoviC: and Kennedy (1982) concerning the analytic continuation of 
group invariants to negative dimensions. We then d e j n e  the negative-dimensional 
classical groups in terms of their action on a Grassmann space, and in such a way 
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that, with these definitions, the aforementioned curious results concerning 'negative- 
dimensional' group invariants follow from the results of § 2. We show in § 4 that this 
construction can be extended to include the spinor representations of SO( -n), which 
we find to be infinite-dimensional 'symplectic spinor' representations of Sp( n). 

In $0 5 and 6, we apply negative-dimensional group theory to the archetypal 
quantum spectral problems for the classical groups-the d-dimensional harmonic 
oscillator for SU(d) and d-dimensional angular momentum for SO(d) .  Finally, we 
conclude with some discussion concerning further applications and generalisations of 
the ideas presented in this paper. 

2. Grassmann tensorial representation theory 

In Klein's Erlangen programme and Weyl's theory of invariants (Weyl 1939) the 
classical groups are defined in terms of transformations on some n-dimensional vector 
space V. For example, GL(n) is defined to be the group of all non-singular n x n 
matrices, and its defining representation gives its action as linear transformations on 
an n-dimensional Euclidean space E ,  : 

A E GL( n) x + x ' = A x  

xi + xli = A:.x'. (2.1) 

The 'tensor' representations are then constructed by considering the action of GL( n) 
on the rank-r tensor space E , @ E , @ .  . . @ E .  = ( E , ) @ , .  The special tensors 

formed from products of the components of r n-vectors x ( ~ ) ,  x ( ~ ) ,  . . . , x(,) span the 
tensor space, and furthermore they carry an ( n r  x n')-dimensional (reducible) rep- 
resentation of GL( n): 

A&L(n): x i ,  ( 1 )  xi2 (2) ' '  ' xir ( r )  -Ai l .  JI Ai2. 1 2 " '  Air,,xjl I ( 1 )  xJ2 ( 2 ) * * * x : ; ) *  (2.3) 

Now there is also an (independent) action of the symmetric group S, on the rank-r 
tensor space which permutes the elements of the different copies of E,  in the tensor 
product ( E , ) @ , :  

i i  i i  i t  
p E s,: x(;)x& . . . Xf;)HX(lp,)X(2p2) . . . x),,, = x;;)X;;). . . xk;). (2.4) 

As these actions (2.3) and (2.4) commute, we can use the decomposition of the tensor 
space into irreducible components under S, to decompose the tensor space into 
irreducible components under GL( n). This decomposition is achieved using Young 
tableaux (Hammermesh 1962, Boerner 1963, Littlewood 1950) and in particular the 
Young symmetriser e, corresponding to the Young tableau A ( A  5 ( A l ,  A z ,  . . . , A k )  is 
a partition of r, giving the number Ai of boxes in the ith row of the Young tableau): 

where h and U refer to the horizontal and vertical permutations of the Young tableau 
box entries along the rows and columns, respectively. The action of the symmetrisers 
e, for all normal Young tableaux on the basis tensors (2.2) generates all the inequivalent 
irreducible invariant subspaces of the rank-r tensor space. 
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Now this whole procedure can be followed through taking the n-dimensional vector 
space carrying the defining representation to be an n-dimensional Grassmann space 
G,. (This is, of course, part of the representation theory of the Lie supergroups 
(Scheunert 1979, Balantekin and Bars 1981, Dondi and Jarvis 1981)). Once again, the 
rank-r tensor space is spanned by the special tensors 

and these carry an ( n '  x n')-dimensional (reducible) representation of GL( n): 

AEGL(n):  . . . @ ~ , l ~ A ' ~ , , A ' ; 2 . .  . A';,@'I ( 1 )  0 ' 2  ( 2 )  * 0'. ( r ) .  (2.7) 

The action of the symmetric group S, on the rank-r tensor space is 

Thus, the Grassmann (anticommuting) nature of the 0 means that when we write the 
action of the symmetric group S ,  on the tensor space as a permutation of the indices 
of the basis tensors (2.6), we must include a ( - l ) p  factor. Hence, the Young symmetriser 
e, acts on (2.6) in exactly the same way as 

(2.9) 

acts on (2.2), and so instead of symmetrising over rows and antisymmetrising over 
columns, we are symmetrising over columns and antisymmetrising over rows. Thus, 
(2.9) corresponds to the Young symmetriser for the 'transposed' (rows and columns 
interchanged, i.e. reflected about the leading diagonal) Young tableau i. This is, in 
fact, the only difference from the conventional case of a bosonic (commuting) tensor 
space, so the reduction of the tensor representations of GL(n) into irreducible com- 
ponents proceeds as usual, with x playing the role of A. 

To see how this affects the irreducible characters, we use the Frobenius formula 
which relates to the characters Q, of GL(n) in the irreducible representation A to the 
characters x, of S, in the irreducible representation A (see, for example, ch VI of 
Boerner (1963)): 

(2.10) 

where 

(Tk Tr(Ak) 

a = permutation class ( a ,  + 2a2  + . . . + ra, = r) .  

From (2.8) it follows that the only change when we derive this formula on a Grassmann 
representation space is that each permutation class a in the sum picks up a minus 
sign if it is odd. So 

Q, ( A ;  Grassmann) = 1 
( a )  a , ! .  . . a,! 

Now it is a result from the theory of the characters of the symmetric group that 
(Littlewood 1950) 

xi( a = ( - 1 )"xA ( a  1. (2.12) 
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Combining with (2.10) and (2.11) we obtain the result 

Lemma 1 .  For A E GL( n), 

qA ( A ;  Grassmann) = cpz( A ;  boson). (2.13) 

For an explicit expression of this result in terms of Weyl’s character formula, see the 
appendix. 

Now consider the irreducible tensor representations of the important classical sub- 
groups of GL( n): U( n), SU( n), O( n), SO( n )  and Sp( n). The conditions defining these 
subgroups may be expressed as matrix conditions independent of the commuting or 
anticommuting nature of the tensor space. (However, note that the way in which we 
realise these conditions as invariant bilinear forms on the tensor space does depend 
on the nature of the tensor space-see 0 3.) Hence, the further reduction of the GL( n) 
irreducible representations when we restrict to these subgroups is the same for the 
bosonic and Grassmann tensor space. So we obtain lemma 2. 

Lemma 2. If G is any one of the classical groups U( n), SU( n), O( n), SO( n) or Sp( n) 
and A E G, then 

q?(A; Grassmann) = cp?(A; boson). (2.14) 

3. Negative dimensional classical groups 

There have been various ‘sightings’ of ‘negative dimensions’ in the context of Lie group 
theory over the years. Penrose (1971) noted, in the context of a diagrammatic method 
for computing algebraic invariants, that certain angular momentum invariants could 
be computed by representing SU(2) = Sp(2) as ‘S0(-2)’. (This observation was based 
on Penrose’s graphical method for calculating algebraic invariants, in which the 
computation can be converted into a colouring problem which permitted solution when 
the number of colours was 2 or -2.) Unfortunately, no explicit construction of these 
‘binors’ was given. King (1971), in giving simple definitive formulae for the dimensions 
of the irreducible representations of the classical groups SU( n), SO( n) and Sp( n), 
noticed a peculiar symmetry of these formulae. If A, is a Young tableau with s boxes, 
and if the dimensions of the corresponding irreducible representations of SU( n), SO( n) 
and Sp(n) are denoted by D{A,: n}, D[A,; n] and D(A,; n), respectively, then King 
noticed that 

Once again, no explanations or interpretation was offered for these unusual relations. 
CvitanoviC and Kennedy ( 1983) used Penrose’s diagrammatic (‘birdtrack’) notation 

to prove the following important results. 
(i)  For all 3m - j  coefficients constructed from tensor representations of SU(n), 

the interchange of symmetrisation and antisymmetrisation is equivalent (up to an 
overall sign of the 3m - j  coefficient) to the ‘analytic continuation’ n + -n. 
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(ii) For all 3m - j  coefficients constructed from tensor representations of SO(n) 
and Sp( n) ,  the interchange of symmetrisation and antisymmetrisation, together with 
the interchange of SO( n )  and Sp( n ) ,  is equivalent (up to an overall sign of the 3 m  - j 
coefficient) to the 'analytic continuation' n + - n. 

&tanoviC and Kennedy expressed these results symbolically as 
SU(-n)=SU(n)  (3 .3a )  

Sp(-n) S O ( n )  (3.3c)  
SO(-n)=Sp(n)  (3 .36)  

where the overbar means symmetrisation and antisymmetrisation are interchanged. 
We can, in fact, give explicit concrete evidence for such relations by looking at the 

closed-form expressions for the independent generalised Casimirs of the classical 
groups (see, for example, ch 9 of Barut and Raczka (1986)) in the totally symmetric 
and totally antisymmetric representations (these are often the most important irreduc- 
ible representations for physical applications). For U( n), the pth-order generalised 
Casimir in the totally symmetric rank-r tensor representation is 

(3 .4a )  

(3 .4b)  

c,U'"'(r, 0,. . . ,o) = r ( r +  n - 1 ) P - l  

while in the totally antisymmetric rank-r tensor representation 
C,U'"'( 1 , 1 ,  . . . , I )  = r (  1 + n - T ) ~ - ' .  

For SU( n ) ,  the corresponding formulae are 
- I)]"'- [ ; ] p - ' }  

C;"'"'( r, 0, . * . , 0) = 
n ( n  + r -  1 )  

and 
C;"("'(l, 1 , .  . . , 1) = r ( n + ~ ) ( n  - r )  { [ ( n + l ) ( n - r ) ] p - ' - [ ; ] p - ' }  

n (  n + 1 - r )  n 

(3 .5a)  

(3 .5b)  

There is a remarkable symmetry in these formulae (not commented on by Barut and 
Raczka) : 

c,U'"'(I, I , .  . . , I )  = (-l)p-'C,U(m)(r, 0,. . . ,0)1,=-,, ( 3 . 6 ~ )  

C ; " y l ,  1 , .  * . ,1) = (-l)P-lCpSU(m)(r,O,. . . , 0) lm =-".  (3 .6b)  

For the orthogonal and symplectic groups, the results are even more striking. For 
SO(2n) and Sp(2n) we find 

Cp(r,  0, * * e ,  0) 
a ( p  + 1 )  ( r  + 2a)P - ( - r ) P  

= ( r + 2 a ) P + ( - r ) P + ( 2 a + p  - l ) +  
2 (a -1 )  r + a  

(3.7a) 

(a + 1)(p - 1 )  r p  -(2a + 2 -  r ) p  
2(a  +2) a + l - r  

= -(2a + 2 - r)' - r p  + ( -1)p(2a + /3 + 3 )  + 

(-'Ip) (3 .76)  
( 2 ~ ~ + 2 - r ) ~ -  + 

2 a + 3 - r  
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where 

for SO(2n) 
n for Sp(2n) 

1 for SO(2n) 
P = { - I  for Sp(2n). 

Remarkably, we find 

( 3 . 8 ~ )  C ,  SO(2fl)  ( 1 ,  I , .  . . , I ) =  (-1)p-1C;p(2m)(r, 0,. . . , o)l,=-, 

and 

c;p'2"'(1,  1 , .  . . , 1 )  = ( - l )~ -1c ;o (2m)(r ,  0,. . . , 0)lm=-,. (3.8b) 

These identities (3.6) and (3.8) give explicit confirmation of the relations (3.3). 
The examples (3.1), (3.2), (3.3), (3.6), and (3.8) are all of a very suggestive form 

when viewed in the light of the result (2.14) relating the characters of bosonic tensor 
representations and Grassmann tensor representations. Note that one can, of course, 
derive all interesting group invariants (dimensions, 3 m - j  couplings, Casimirs, etc) 
from the irreducible characters. We are thus motivated to make the following construc- 
tive definitions for negative-dimensional classical groups (here we take the Klein-Weyl 
view that the groups can be defined by their defining representations; the connection 
with the Lie-Cartan infinitesimal viewpoint is discussed in the subsequent sections.) 

GL(-n) is defined to be the group of non-singular n x n matrices acting on an 
n-dimensional Grassmann vector space G, as in (2.7). Then from (2.13) we conclude 

GL(-n) z GL(n) (3.9) 

(the symbol = is to be understood in the sense that the irreducible characters are 
complete, i.e. they encode all the group theoretic information for all the finite- 
dimensional tensor representations). U( -n) and SU( -n) are defined to be restrictions 
of GL(-n) in which a Hermitian metric Sf  is invariant under the actions { A }  and {A* }  
of GL(-n) on G, and its conjugate G:, respectively (see, for example, Hammermesh 
1962) : 

on G, : @"*A"b@b 

on Gz:  @ d ~ ( A * ) d b @ b ;  = @t;(A*T)bd. 

For SU(-n) we further require the elements to satisfy det A = 1 .  Then from (2.14) we 
have 

U(-n)=.U(n) (3.10) 

SU(-n) =SU(n).  (3.11) 

To define the negative-dimensional orthogonal group we notice that in the Grass- 
mann tensor space the role of the usual symmetric bilinear form S, is played by the 
antisymmetric bilinear form E , .  eij is used to relate G, to its dual (i.e. to lower indices) 
and is used to form the analogue of the bosonic inner product x2 = xitji&; namely 
02= @'e,@'. (Note that it is this O2 which appears in the Grassmann version of 
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multidimensional Gaussian integration for which the sign of the dimension is reversed- 
see Dunne and Halliday (1987).) So we define SO(-n)  to be the subgroup of uni- 
modular elements of GL(-n) which leave the bilinear form O2 invariant. As these 
are, in fact, what we would usually call symplectic transformations, we have from (2.14) 

SO(-n)  = Sp( n )  (3.12) 

(note that n must, of course, be even). 
Similarly, the analogue of the bosonic symplectic product [ x y ]  = X ’ E ~ Y ’  in the 

Grassmann space is [@II]=Oi8,Jl’ .  So we define Sp(-n) to be the subgroup of 
GL(-n) which leaves invariant bilinear form [On]. As these are what we usually call 
orthogonal transformations, we have from (2.14) 

Sp(-n)=SO(n) (3.13) 

(note that here n can be odd or even). 
Given these constructive definitions of the negative-dimensional classical groups, 

the relations (3.1), (3.2), (3.3), (3.6), and (3.8) all follow from (2.14) (apart from an 
overall f sign). This overall 51 factor can be understood by recalling that a character 
is a trace, which we can write as 

Trh(A) = (statelAlstate). 
states 
in h 

In the bosonic case these states can be properly normalised to all have norm +1 ,  but 
in the Grassmann case the natural inner product is indefinite, which means that for 
some irreducible representations all the states will have norm -1. An explicit example 
of how this *1 factor appears is in the spectral analysis of the negative-dimensional 
harmonic oscillator (see 0 5 ) .  

These definitions of negative-dimensional classical groups can be viewed in two 
ways. Firstly, given the ‘data’ (3.1), (3.2), (3.3), (3.6) and (3.8), the relation (2.14) 
provides very convincing evidence that the interpretation of Grassmann spaces as 
‘negative-dimensional’ bosonic spaces is indeed very fundamental, and goes far beyond 
the original notion based on their integration properties (Parisi and Sourlas 1979, 
Dunne and Halliday 1987, 1988). Alternatively, given some physically motivated 
intuition that Grassmanns are negative dimensional, we see that we can construct in 
a perfectly straightforward manner a framework in which the somewhat bizarre alge- 
braic identities (3.1), (3.2), (3.3), (3.6) and (3.8) arise naturally. 

The spectral theory of the classical groups is often formulated in terms of functional 
analysis (we are usually interested in totally symmetric bosonic representations which 
correspond to functions of commuting variables). This is an infinite-dimensional form 
of representation theory which relies heavily on the field nature of the space variables 
(usually R” or e”). Now for the negative-dimensional classical groups, the spectral 
theory becomes finite dimensional as the Grassmann representation space is finite 
dimensional. Furthermore, the Grassmann space G, only has a ring structure. In 
these terms it seems surprising at first that the Grassmann representation space is 
‘sufficient’ to match the bosonic representation space, and indeed that a simple analytic 
continuation n + -n should connect a finite-dimensional algebraic structure with 
infinite-dimensional functional analysis. 

In 0 0  5 and 6 we will see explicitly how all this works by looking at the archetypal 
quantum spectral problems involving the classical groups: the harmonic oscillator for 
SU( n )  and angular momentum for SO( n ) .  
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4. Symplectic or negative-dimensional spinors 

The discussion thus far has been concerned with all the finite-dimensional irreducible 
tensor representations A associated with Young tableaux. A natural question to ask 
is: is there a negative-dimensional analogue of the spinor representations of the 
orthogonal group? To arrive at spinors in a language akin to that of the tensorial 
representation theory, we follow the methods of Dirac (1928) and Brauer and Weyl 
(1935). 

Thierry-Mieg (1984)t has, in fact, shown that the metaplectic representation of 
Sp(2k), represented on the space C(z) of functions of the complex variables zl, . . . , zk,  
resembles a negative-dimensional version of the spinor representation of SO(2k)  
represented on the space C(0) of functions (polynomials) of the Grassmann variables 
O' ,  . , . , Ok. Here we would like to take a different (but complementary) approach, in 
keeping with the discussion of the preceding sections, and describe spinors using 
tensorial representation theory. 

Dirac considered writing the orthogonal norm as the square of a linear form: 

( x ' ) 2 + ( x 2 ) 2 + .  . . + ( x " ) 2 = ( y ' x ' + y 2 x 2 + .  . . + y " x " ) 2 .  (4.1) 

This requires the y '  to satisfy the anticommutation relations which define a Clifford 
algebra C, : 

{ y ' ,  y ' }  = 26". (4.2) 

Note that there exists a (unique up to equivalence) 2[n/21 x 2["/21 matrix representation 
of C, (Weyl 1939). Now consider a matrix A in the defining representation of the 
orthogonal group O ( n )  acting on the Euclidean vector x as 

x '  + x" = A',x'. (4.3) 

Following Brauer and Weyl, we apply the same transformation to the Clifford algebra 
generators y'  in the 2[n/21 x 2[n/21 matrix representation 

y ' +  y" = A',yJ. (4.4) 

Then the y i  also satisfy the Clifford algebra relations (4.2). But since the matrix 
representation is unique, we must have 

y" = A ( A ) ~ A ( A ) - '  (4.5) 

where A is a 2["'21 x 2;"/21 matrix depending on the orthogonal matrix A. In fact, the 
A form a double-valued unitary representation of O ( n ) ,  which we call the spinor 
representation. (Note that, when we restrict A to be an SO(n) matrix, the situation 
depends on whether n is even or odd: for odd n there is no change, but for even n 
the spinor representation A splits into two inequivalent representations, A+ and A - ,  
each of degree 2["'21-1.) 

Now we cannot follow this procedure on a Grassmann tensor space because the 
orthogonal 'norm' of a Grassmann vector vanishes identically: O'i3vW = 0. However, 
on the Grassmann space it is more natural to consider the symplectic form 02= @'eyOJ. 
Then, in the spirit of Dirac, we seek algebraic quantities p' such that 

o2 = (p '&vO')2 (4.6) 

t The author would like to thank one of the referees for bringing this reference to his attention. 
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i.e. 
2 ( @ 1 @ 2 + @ 3 @ 4 + .  . . + @ n - 1 @ n ) = ( p 1 @ 2 - p 2 @ ' + ,  . . + p n - 1 @ n - p n @ n - 1 ) 2 ,  

(Notice that n is required to be even.) This requires the p '  to satisfy the commutation 
relations 

[p ' ,  p ' ]  = 2 E I J .  (4.7) 
These commutation relations can be represented as the commutation relations of the 
Heisenberg algebra for n independent sets of bosonic creation and annihilation 
operators: 

[Z l ,  2'3 = 2E'J 

where 

t = f i ( a ' + ,  a ' , a 2 + , a 2  , . . . ,  a"+ ,a" ) .  (4.8) 

Thus we can represent the p '  by a unitary irreducible infinite-dimensional rep- 
resentation, as is usually done in terms of differential operators on Hilbert space in 
n-dimensional quantum mechanics. 

Now, consider making linear transformations analogous to (4.3) and (4.4) but now 
with A being a matrix in the defining representation of Sp(n): 

@' +, 0'1 = A',@' 

and 
p'  +, p" = A'#' 

where the p'  are represented as in (4.8). Then the p" also satisfy the commutation 
relations (4.7). But the Stone-Von Neumann theorem (see Abraham and Marsden 
1978, ch 5 )  says that the unitary irreducible representation of these commutation 
relations is unique. Thus there must exist some invertible unitary operator V such that 

p" = v ( A ) ~ ' v ( A ) - '  (4.9) 
where V is an infinite-dimensional matrix depending on the symplectic matrix A. We 
will call the representation 

(4.10) 

the 'symplectic spinor' representation of Sp( n) .  
It is interesting to note the interchange of roles of commuting and anticommuting 

variables in the construction of symplectic spinors. Here, the commuting variables 
used to define orthogonal spinors are replaced by anticommuting variables in the 
definition of symplectic spinors, while, in the approach of Thierry-Mieg (1984), the 
anticommuting variables used to construct the orthogonal spinors are replaced by 
commuting variables in the definition of the symplectic spinors. Following the dis- 
cussion of the previous section and the results of Thierry-Mieg (1984), these symplectic 
spinors can be thought of as (infinite-dimensional) representations of 0( -n) ,  or 
'negative-dimensional spinors'. In each construction, we see that the passage from 
positive to negative dimensions involves an interchange of commuting and Grassmann 
variables. 

In fact, the defining commutation relations (4.7) are the same as those arrived at 
by CvitanoviC and Kennedy (1982) in the 'spinster' construction in which they con- 
sidered the possibility of taking the usual y matrix entries to be Grassmann valued. 
Using Penrose's diagrammatic methods, they showed that, in n dimensions, spinor 

V : A +, V(A) 
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traces can be reduced to sums of terms involving Fierz, 3 - j and 6 - j coefficients for 
antisymmetric representations of SO( n) .  Furthermore, they found that 'spinster' traces 
can be reduced to similar sums for symmetric tensor representations of Sp(n), and 
that the Fierz, 3 - j  and 6 - j coefficients continue under n + -n from the spinor to the 
spinster case. Hence, the Sp(n) representation based on (4.7) can indeed by interpreted 
as a spinor representation of SO(n). 

5. Positive- and negative-dimensional harmonic oscillator 

In this section we consider the group theoretical approach to the spectral problem of 
the isotropic harmonic oscillator in positive and negative dimensions. In the positive- 
dimensional system (dim = 2n), it is useful to define the usual bosonic Fock space with 
operators ai ,  uf such that 

[ai ,  a;] = 6, (5.1) 

H = a '~S~u,  + n. (5.2) 

in terms of which the Hamiltonian is 

Now we can also represent the generators of SU(2n) in the Cartan form using these 
Fock operators: 

Cartan subalgebra generators: H i  = a l a ,  (no sum over i) (5.3) 

(5.4) 

i = 1, . . . ,2n  - 1 

step operators for the positive roots (ei - e, ): E ( e i  - e,) = uta j  ( i  < j ) .  

It is straightforward to check that these satisfy the required commutation relations 

[ H k ,  E ( ei - ej )] = SkiE (ek - e,) - &,E ( ei - e k )  

[ E (  e, -e, ), E (  -ei  + e,)] = Hi - Hj. 
The trick of writing the Lie algebra generators in terms of Fock operators is originally 
due to Schwinger (1965). It is now easy to see that SU(2n) is the (maximal) symmetry 
group of the harmonic oscillator system, since 

[ H , H , ] = O  V i  

and 

[ H , E ( e i - e , ) ] = O  Vi , j .  

Thus the eigenstates will correspond to irreducible representations of SU(2n). In the 
standard Fock space construction, the vacuum 10) is annihilated by all the ai, and 
hence is annihilated by all the SU(2n) generators (5.3) and (5.4). The Fock state 

2n 

I(m,, . . . , m z n ) )  = n (u:)~JIo) 
1=1  

has energy eigenvalue n + m where m =E?:, m,. The multiplicity is the number of 
ways of choosing the m, such that m = ZTlr, m,,  which is (*"+:-') (the number of ways 
of choosing m objects from 2n with repetitions allowed). This agrees with the fact 
that since all the a: commute with each other, the Fock states with fixed energy n + m 
form a totally symmetric irreducible representation of SU(2n) which has dimension 
( 2 n  +," - ' ) . 
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Now in the 2n-dimensional Grassmann harmonic oscillator system it is also useful 
to define a 'Fock' space (Finkelstein and Villasante 1986, Dunne and Halliday 1988) 
using the oscillators a, ,  a: such that 

{a,,  .:I = El/ ( 5 . 5 )  

in terms of which the Hamiltonian is 

H = a : ~ " a ,  - n 

=a:a ' -n  (5 .6 )  

where E" is used to raise the indices. It is remarkable (Gilmore 1974) that we can also 
use these Grassmann Fock operators to represent the SU(2n) generators in Cartan form: 

Cartan subalgebra generators: HI = a:a' (no sum over i )  i = 1, . . . , 2 n  - 1 (5.7) 

step operators for positive roots: E (e, - e, ) = a:aJ ( 5 . 8 )  

Once again, SU(2n) is the maximal symmetry group of the system since 

i< j .  

[ H ,  HI1 = 0 V i  

[ H ,  E(e, - e, 11 = 0 Vi,  j .  

The vacuum 10) is annihilated by all the a,, and so is SU(2n) invariant. The Fock 
states are formed as 

(5.9) 

but now, because of the Grassmann nature of the oscillators, each mi can only be 0 
or 1. This state has energy eigenvalue -n + m (where m is defined as before), and the 
multiplicity is (2) (the number of ways of choosing m objects from 2n with no 
repetitions). This agrees with the fact that since the a+ all anticommute with each 
other, the Fock states with fixed energy -n + m form a totally antisymmetric irreducible 
representation of SU(2n) with dimension (2). 

Now let us compare the spectra of the 2n-dimensional bosonic HO and of the 
2n-dimensional Grassmann HO (Dunne and Halliday 1988): 

- n w  . . .  0 . .  . (n-1)w n w ( n + l ) w  , 

-7 7'7 
Grassmann bosonic 

Grassmann: E,,, = -nw + mw 

(3 multiplicity = 

bosonic: E, = nw + mw 

(2n +: - 7 .  
multiplicity = 

( 5 . 1 0 ~ )  

(5.10b) 

These spectra are both discrete, with energies quantised in units of w. Notice that 
the Grassmann multiplicity function (2) vanishes for m < O  and for m > 2n, and so 
the spectrum is finite. However, while (2n+z-1) vanishes for m < 0, there is no upper 
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limit on m, and hence the bosonic spectrum is semi-infinite (bounded below but not 
above). In fact, these spectra continue into one another under the analytic continuation 
n + -n, as is clear from (5.10) if we note that 

2 n + m - 1  
m m 

This somewhat mysterious result follows immediately from the results of this paper 
where it has been shown that Grassmann representations of SU(2n) behave like the 
(transposed) bosonic representations of SU(2n) with n continued to -n. The ( - l ) m  
factor appearing in the continuation of the multiplicities (compare with equation (3.1)) 
appears naturally in the Grassmann quantum theory due to the fact that the Grassmann 
Fock states (5.9) have indefinite normalisation. 

To see this explicitly, consider obtaining the spectra from the respective Green 
functions by the following procedure. The 2n-dimensional bosonic HO Green function 
is 

G(x, t ;  x’, t ’ )  

) (5 .11~)  =( 2~ sin U T  )‘exp(- 2 sin wT [(X’+X’’) COS w T - 2 ~ .  x’] 
mw - mw 

(5.1 1 b )  

where T E ( t ’  - t )  and { cp,} is a complete set of orthonormal energy eigenstates. Then 

d2”xG(x, t ;  x, t ’ )  = E  multiplicity(E,) exp(-iE,T) 
m 

from (5.11b). But from ( 5 . 1 1 ~ )  this equals 

exp[-i( m + n)wT] 
2 n + m - 1  

[-2(1 -cos UT)]-“ = 
m ( 

which gives the spectrum (5.10b). For the 2n-dimensional Grassmann HO system, the 
Green function is (Dunne and Halliday 1987) 

G(0, t ;  e’, t ’ )  

mw -mw 
7~ sin wT 2 sin wT 

(5.12b) 

where now the energy eigenstates (Lm(0) are normalised using the (indefinite) Grass- 
mann inner product 

d2“ O(Lm (0) $k (0) = (- 1) “‘8,k.  I 
Then 

d’”OG(0, 1 ;  0, t ’ )  =E ( - l )m multiplicity(E,) exp(-iE,T) 
m 
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from (5.12b). But from the explicit expression for the Green function we find that 
this equals 

2 n  
n = O  m 

2 n  

[-2(1 -cos U T ) ] "  =exp(in w T )  c ( - l ) m (  ) exp(-imoT) 

which gives the spectrum (5.10a), and illustrates clearly the origin of the ( - l )m factor 
in the multiplicity. 

We conclude that, while SU(2n) is the symmetry group of the 2n-dimensional 
bosonic harmonic oscillator, SU(-2n) (as defined in 0 3) is the symmetry group of the 
2n-dimensional Grassmann harmonic oscillator. 

It is interesting to note how the two Fock spaces decompose into irreducible 
representations for these two systems. In the bosonic system, the Fock space is infinite 
dimensional and reduces into a direct sum of all the totally symmetric irreducible 
representations of SU(2n): 

) = W .  
m=O (2n+"-1 

In the Grassmann system, the Fock space is finite dimensional (dimension 22"), and 
we can see explicitly how it reduces into a direct sum of all the totally antisymmetric 
irreducible representations of SU(2n): 

f (;) =22n. 
m = O  

6. Negative-dimensional angular momentum 

The angular momentum generators 

LIJ = XIPI - 'JPl i , j = l , , , . , N  (6.1) 
where p, = +/ax, generate SO( N) transformations. This realisation of the SO( N) 
generators as differential operators bridges the gap between Weyl's theory of invariants 
and the Lie-Cartan infinitesimal formulation of Lie groups and algebras. In the latter 
language, the operators (6.1) generate SO( N) transformations because 

(6.2) 
(where b y  = -bJ1 are infinitesimal real parameters) leaves the orthogonal inner product 
x2 = xk8k1Xl invariant. Furthermore, we can verify that the L, satisfy the SO( N) algebra 
commutation relations 

Xk + X; = exp(fib"L, )Xk 

[Ltj, Lkll = i(8tkLjl  - 8ilL,k - 8jkLil + SjILik)* (6.3) 
The quadratic Casimir of SO( N) is 

c -1 v k l  
2 -  2 6  8 LikLjl 

= x2p2+ i( N - 2)x. p - ( x -  

In an irreducible representation labelled by highest weight A, 

C 2 = A 2 + A -  CY 
a > O  
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where Q > 0 are the positive roots of SO(N) .  For SO(2n) the positive roots are 
ei * e,( i < j ;  i = 1,  . . . , n - l ) ,  while for SO(2n + 1) the positive roots are ei i e,, ( i  < j ;  i = 
1,  . . . , n - l ) ,  and ei( i = 1, . . . , n). We are usually interested in the angular momentum 
of systems with commuting coordinates, so we are interested in the eigenvalues of C, 
in totally symmetric irreducible representations. Such an irreducible representation 
has highest weight 

A = ( I ,  0, .  . . ,O). 

c,= 1(1+N-2).  (6.7) 

The multiplicity of this eigenvalue is just the dimension of the corresponding totally 
symmetric irreducible representation. From Weyl's dimension formula 

(6.6) 

Then, for SO(N)  we have 

(where S = &a,O a), we find that 

dim( 1, 0, . . . , 0) = (21 Lr; 2) ( I  + 7 - 3) 
(6.9) 

When N = 3 we recover the familiar case of angular momentum in three dimensions, 
for which 

L2 = c, = 1( 1 + 1 ) 

with multiplicity 21 + 1. 
Motivated by the results of $9 2 and 3, we would expect the above construction on 

a (symplectic) Grassmann space to yield 'negative-dimensional' angular momentum. 
In a 2 n-dimensional Grassmann space, the generators L,, of infinitesimal transforma- 
tions 

0, + exp(~ibaPL,,)@, (6.10) 

(where bap = bp" are infinitesimal real parameters) which leave invariant the bilinear 
form 02= 0 , ~ " ~ 0 ,  may be represented as 

(6.11) L,, = o,n, +@,nu a, p = 1 , .  . . , 2 n  

where 

II, = iEp,d/dO,. 

Notice that L,, is now symmetric in the a and p indices, so there are n(2n + 1 )  such 
generators. They satisfy the commutation relations 

(6.12) 

which are the commutation relations for the generators of Sp(2n). (It is interesting to 
note that a very similar construction has been used for Sp(2) by Delbourgo (1988) in 
a formulation in which spin is realised in terms of Grassmann angular momentum.) 
The quadratic Casimir is 

[Le,, L,,I= i(Ey,Lu, + EyaLpa + EsuL,, +Ed&,,) 

c2 = $ E ~ ~ E ~ ~ L , ~ L ~ ~  

= -o2n2 - i(2n + 2)0 II + (O  II),. (6.13) 
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In the Grassmann system we are interested in the angular momentum of a system with 
anticommuting coordinates, which means that we are looking for the eigenvalues of 
C2 in totally antisymmetric irreducible representations of Sp(2n). Such a representation 
has highest weight 

(6.14) A"'= (,l, 1 , .  . . , 1, ,0 ,0 , .  . . , 0 )  
I times 

(note that when 1 > n, A ( ' ) =  A ( 2 n - ' ) ) .  Sp(2n) has positive roots ei f ej ( i  < j ;  i = 
1, .  . . , n -1) and 2ei( i= 1 , .  . . , n). Hence, using (6.5), we have 

(6.15) 

The multiplicity of this eigenvalue is just the dimension of the corresponding totally 
antisymmetric irreducible representation of Sp(2n): 

C2 = - I (  1 - 2 n  - 2). 

dim(A('))=(-)( n-1+1 2n+2  ) 
n + l  

(6.16) 

Evaluating the bosonic results (6.7) and (6.9) at N = -2n gives 

CSo(N)(bOSOII)IN=-2n= 1(1-2n -2) (6.17) 

( n 4; 1) ( 1 - 2; - 3) 
dim((1,0, . . . ,0 ) ;SO(N);boson) lN=-2 ,=  - 

2n+2  
n + l  (6.18) 

Thus comparing (6.15) and (6.16) with (6.17) and (6.18) we find that the Grassmann 
angular momentum is naturally identified with negative-dimensional bosonic angular 
momentum. Once again, the (-1)' factor in the multiplicity is due to the indefinite 
normalisation of the Grassmann states. This result is an algebraic version of the group 
theoretical results (3.2) and (3.8). 

Finally, we comment that the Grassmann spectral problem can be formulated as 
a finite-dimensional matrix problem (cf the 'operator' analysis of negative-dimensional 
quantum mechanics in Dunne and Halliday (1988)). For example, from (6.13) with 
n = l ,  

which has a 4 x 4 matrix representation 

This clearly has eigenvalues 0 and 3, each with multiplicity 2. From (6.15) and (6.16) 
with n = 1 (recalling that A ( ' ) =  A('"-') for I >  n )  we find 

1 = 0 , 2 - , c 2 = 0  each with multiplicity 1 

1 = 1 - , c 2 = 3  with multiplicity 2. 

These agree with the matrix results above. 
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7. Conclusion and discussion 

In this paper we have shown that the identification of Grassmann variables with 
‘negative dimensions’ extends to the representation theory of the classical Lie groups. 
This identification leads to constructive definitions of negative-dimensional groups, 
whose irreducible characters are related to those of positive-dimensional groups in a 
way that naturally incorporates some remarkable identities concerning the analytic 
continuation of group invariants. Applying these results to the quantisation of Grass- 
mann systems, we found that SU( -2n) and SO( -2n) are indeed the symmetry groups 
of the Grassmann harmonic oscillator and of Grassmann angular momentum, respec- 
tively. 

These ideas suggest several intriguing generalisations. Firstly, while the relationship 
between Grassmann and bosonic tensor (and spinor) representations of the classical 
groups is quite straightforward in the Weyl framework discussed in § 2, it would be 
interesting to translate this directly into Cartan’s (perhaps more familiar) algebraic 
framework. Also, if the negative-dimensional symmetry of the group characters could 
be incorporated directly into Weyl’s character formula (when expressed in terms of 
roots and weights, rather than in the determinantal form of the appendix), then we 
may well find a further generalisation of these results to  the exceptional groups, and 
even to infinite-dimensional Lie groups. Several things suggest that this latter generali- 
sation should be meaningful. Firstly, Weyl’s character formula itself has a natural and 
elegant extension to infinite-dimensional algebras (Kac 1985). Secondly, a simple 
construction of the Virasoro algebra in terms of bilinears of Grassmann oscillators: 

oc 

L , = i :  c ffI,-naS,&,s: 
m = - c c  

\where 

{a:, a;} = mSm,-nE‘6 

instead of the usual bosonic oscillators (see, for example, Goddard and Olive 1986) 
leads to the commutation relations 

r, s = 1, . . . D 

[ L m ,  L n 1 = ( m - n ) L m + n - ~ D m ( m 2 - 1 ) S m , - n  

which has a ‘negative-dimensional’ central extension term. (This is exactly analogous 
to the ghost systems in bosonic string theory.) Work is in progress to investigate a 
similar negative-dimensional construction for Kac-Moody algebras. 
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Appendix. Weyl’s character formula 

In this appendix, we express the result (2.13) in an explicit determinantal form. Weyl 
(1939) gave an explicit character formula (apparently originally due to Shur) for the 
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cpA ( A ;  Grassmann) = 

1735 

qA2-1 q h  2 . 

qAh-k+l q A i - k + 2  ' * * 

irreducible representations of GL( n ):  

P A 2 : k - 2  I 
where p, is the coefficient of ZJ in the expansion of l /det(  1 - zA). This makes use of 
a determinantal identity first given by Jacobi. Now let the same Young tableau A be 
specified by its column lengths (I,, . . . , i m )  rather than by its row lengths ( A , ,  . . . , A k ) .  

Then, using another determinantal identity due to Naegelsbach (see Littlewood 1950, 
ch VI and references therein), we can write this same character as 

9X I + m  - 1 

% - I  9x2 q i 2 + m - 2  

. . .  4 i  I % , + 1  

qX - m + I 4X n/ - m +2 qi  ,n 
where e is the coefficient of ( - z ) '  in the expansion of det(1- zA). (Notice that these 
identities are quire remarkable, as in general they relate determinants of different 
degree.) We can use this result, combined with (2.13), to give a formula analogous to 
Weyl's character ( A l )  for Grassmann tensorial representation theory: 

1 q A 1  q h 2 + 1  ' ' * qAl+k-1 I 
q A > +  k -2 : I  
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